Abstract
When grown on a non-penetretable at a surface angle of 45°, Arabidopsis roots form wave-like structures and, in wild type rarely, but in certain mutants the tip root even may form circles. These circles are called coils. The formation of coils depends on the complex interaction of circumnutation, gravitropism and negative thigmotropism where – at least – gravitropism is intimately linked to auxin transport and signaling. The knockout mutant of patatin-related phospholipase-AI-1 (pplaI-1) is an auxin-signaling mutant which forms moderately increased numbers of coils on tilted agar plates. We tested the effects of the auxin efflux transport inhibitor NPA (1-naphthylphtalamic acid) and of the influx transport inhibitor 1-NOA (1-naphthoxyacetic acid) which both further increased root coil formation. The pPLAI-1 inhibitors HELSS (haloenol lactone suicide substrate=E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one) and ETYA (eicosatetraynoic acid) which are auxin signaling inhibitors also increased coil formation. In addition, far red light treatment increased coil formation. The results point out that a disturbance of auxin transport and signaling is one potential cause for root coils. As we show that the mutant pplaI-1 penetrates horizontal agar plates better than wild type plants root movements may help penetrating the soil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.