Abstract

Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a novel candidate of tumor suppressor that can selectively induce apoptosis experimentally in a spectrum of human cancer cells including leukemia cells. However, a recent study suggests that mda-7/IL-24 promotes the survival of chronic lymphocytic leukemia B-cells. In this study, we showed that mda-7/IL-24 was constitutively expressed in leukemia cell lines and primary acute myeloid leukemia samples. Using a conditionally replicating adenovirus expressing mda-7/IL-24 (ZD55-IL-24), we showed that enforced expression of mda-7/IL-24 in leukemia cells induced autophagy, which was triggered by the upregulation of Beclin-1. Immunofluorescence and coimmunoprecipitation studies suggested that mda-7/IL-24 protein interacts with Beclin-1. Class III PI3K/Beclin-1 complex was shown involved in the mda-7/IL-24-induced autophagy. Moreover, autophagy inhibition by phosphatidylinositol 3-kinase inhibitor, wortmannin, resulted in a reduced Beclin-1 expression and autophagosome formation associated with significantly enhanced cell death. Importantly, the combination of ZD55-IL-24 with wortmannin elicited a strongly enhanced antileukemia efficacy in established leukemia xenografts. These results suggest that mda-7/IL-24-induced autophagy in leukemia cells may provide survival advantage and mda-7/IL-24 combined with agents that disrupt autophagy is a promising new strategy for the treatment of leukemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.