Abstract

Subsurface boron doping reconstructs the Si(111) surface and alters the electronic character of the surface Si atoms. The interaction of atomic hydrogen with the boron-modified Si(111)-(√3×√3)-R30° surface was studied using temperature programmed desorption (TPD), high-resolution electron energy-loss spectroscopy (HREELS), and low-energy electron diffraction. In comparison to the Si(111)-(7×7) surface, we observe a significantly reduced hydrogen saturation coverage, measured by TPD and HREELS, and the absence of silane production. The ordered (1/3 ML) subsurface boron atoms passivate the surface Si atoms and reduce their reactivity with atomic hydrogen. This leads to a surface condition causing suppression of silicon etching by atomic hydrogen, compared to the unmodified Si(111)-(7×7) surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call