Abstract

Epidemiological studies have shown gender differences in the incidence of congestive heart failure (CHF); however, the role of estrogen in CHF is not known. We hypothesize that estrogen prevents cardiomyocyte apoptosis and the development of CHF. 17Beta-estradiol (E2, 0.5 mg/60-day release) or placebo pellet was implanted subcutaneously into male G alpha q transgenic (Gq) mice. After 8 weeks, E2 treatment decreased the extent of cardiac hypertrophy and dilation and improved contractility in Gq mice. E2 treatment also attenuated nicotinamide adenine dinucleotide phosphate oxidase activity and superoxide anion production via downregulation of Rac1. This correlated with reduced apoptosis in cardiomyocytes of Gq mice. The antioxidative properties of E2 were also associated with increased expression of thioredoxin (Trx), Trx reductases, and Trx reductase activity in the hearts of Gq mice. Furthermore, the activation of apoptosis signal-regulating kinase 1 and its downstream effectors, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, in the hearts of Gq mice was reduced by long-term E2 treatment. Indeed, E2 (10 nmol/L)-treated cardiomyocytes were much more resistant to angiotensin II-induced apoptosis. These antiapoptotic and cardioprotective effects of E2 were blocked by an estrogen receptor antagonist (ICI 182,780) and by a Trx reductase inhibitor (azelaic acid). These findings indicate that long-term E2 treatment improves CHF by antioxidative mechanisms that involve the upregulation of Trx and inhibition of Rac1-mediated attenuated nicotinamide adenine dinucleotide phosphate oxidase activity and apoptosis signal-regulating kinase 1 /c-Jun N-terminal kinase/p38 mitogen-activated protein kinase-mediated apoptosis. These results suggest that estrogen may be a useful adjunctive therapy for patients with CHF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call