Abstract

Background Bacillus anthracis is the bacterium responsible for causing anthrax. The ability of B. anthracis to cause disease is dependent on a secreted virulence factor, lethal toxin, that promotes survival of the bacteria in the host by impairing the immune response. A well-studied effect of lethal toxin is the killing of macrophages, although the molecular mechanisms involved have not been fully characterized.Methodology/Principal FindingsHere, we demonstrate that celastrol, a quinone methide triterpene derived from a plant extract used in herbal medicine, inhibits lethal toxin-induced death of RAW264.7 murine macrophages. Celastrol did not prevent cleavage of mitogen activated protein kinase kinase 1, a cytosolic target of the toxin, indicating that it did not inhibit the uptake or catalytic activity of lethal toxin. Surprisingly, celastrol conferred almost complete protection when it was added up to 1.5 h after intoxication, indicating that it could rescue cells in the late stages of intoxication. Since the activity of the proteasome has been implicated in intoxication using other pharmacological agents, we tested whether celastrol blocked proteasome activity. We found that celastrol inhibited the proteasome-dependent degradation of proteins in RAW264.7 cells, but only slightly inhibited proteasome-mediated cleavage of fluorogenic substrates in vitro. Furthermore, celastrol blocked stimulation of IL-18 processing, indicating that celastrol acted upstream of inflammasome activation.Conclusions/SignificanceThis work identifies celastrol as an inhibitor of lethal toxin-mediated macrophage lysis and suggests an inhibitory mechanism involving inhibition of the proteasome pathway.

Highlights

  • Anthrax lethal toxin (LeTx) comprises two proteins that are secreted separately by Bacillus anthracis and that form complexes on the surface of mammalian cells [1]

  • Heptamers of PA63 bind the second toxin component, lethal factor (LF) [2,3,4]. These toxin complexes are internalized by receptor-mediated endocytosis and LF is delivered to the cytosol after translocating through a membrane-spanning pore formed by the heptamer [5,6]

  • We found that celastrol blocked proteasome-mediated destruction of ubiquitylated proteins and prevented LeTx-stimulated processing of IL-18, suggesting that the cytoprotective effects of celastrol are a result of its ability to inhibit the proteasome pathway, thereby preventing inflammasome activation

Read more

Summary

Background

The ability of B. anthracis to cause disease is dependent on a secreted virulence factor, lethal toxin, that promotes survival of the bacteria in the host by impairing the immune response. A well-studied effect of lethal toxin is the killing of macrophages, the molecular mechanisms involved have not been fully characterized. Celastrol did not prevent cleavage of mitogen activated protein kinase kinase 1, a cytosolic target of the toxin, indicating that it did not inhibit the uptake or catalytic activity of lethal toxin. We found that celastrol inhibited the proteasome-dependent degradation of proteins in RAW264.7 cells, but only slightly inhibited proteasome-mediated cleavage of fluorogenic substrates in vitro. This work identifies celastrol as an inhibitor of lethal toxin-mediated macrophage lysis and suggests an inhibitory mechanism involving inhibition of the proteasome pathway

INTRODUCTION
MATERIALS AND METHODS
RESULTS AND DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.