Abstract

The ability of various natural and synthetic steroids (some of which are widely used in clinical practice) to compete with dihydrotestosterone receptor binding in human genital skin fibroblasts was studied. Binding was assessed in fibroblast monolayers after incubation for 1 h at 37 degrees C with 2 nM 3H-dihydrotestosterone in the presence or absence of increasing concentrations of the steroid to be tested. Inhibition constants (Ki) were determined as the concentration of competitor-required for 50% inhibition of 3H-dihydrotestosterone binding. In addition, relative binding activity (RBA) of each test compound was calculated. Each competitor was tested in at least two different cell strains. The concentrations of unlabeled methyltrienolone (a synthetic nonmetabolizable androgen) and dihydrotestosterone for 50% inhibition of 3H-dihydrotestosterone binding were in the same order of magnitude, namely, 2 nM (2.2 respectively, 2.4 nM), whereas the affinity of testosterone was approximately one-fifth that of dihydrotestosterone. Other potent competitors for dihydrotestosterone binding were three progestins (norgestrel, gestoden, and medroxyprogesterone acetate) which have Ki values similar to testosterone. An order of magnitude lower Ki values (around 10(-7) M) were found for the androgen 17 alpha-propylmesterolone, the antiandrogen cyproterone acetate, and the progestin norethisterone acetate. Binding affinities of all other steroids to the androgen receptor were markedly lower and showed the following order of potency: estrogens (estradiol, ethinyl estradiol, diethylstilbestrol) greater than glucocorticoids as well as aromatase inhibitors and potassium canrenoate.(ABSTRACT TRUNCATED AT 250 WORDS)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.