Abstract

BackgroundLight chains are abnormally overexpressed from disordered monoclonal B-cells and form amyloid fibrils, which are then deposited on the affected organ, leading to a form of systemic amyloidosis known as AL (Amyloid Light chain) amyloidosis. A green tea catechin, epigallocatechin-3-O-gallate (EGCG), which is thought to inhibit various amyloidoses, is a potent inhibitor of amyloid fibril formation in AL amyloidosis. MethodsAn amyloidogenic variable domain in λ6 light chain mutant, Wil was incubated in the presence of EGCG. The incubation products were analyzed by SDS-PAGE and reverse-phase HPLC. The interaction between Wil and EGCG was observed by using NMR and tryptophan fluorescence. ResultsEGCG inhibited the amyloid fibril formation of Wil at pH 7.5 and 42 °C. Under these conditions, most Wil populations were in the unfolded state and several chemical reactions, i.e., oxidation and/or covalent bond oligomerization could be induced by auto-oxidated EGCG. Moreover, we found that EGCG bound to the unfolded state of Wil with higher affinity (Kd = 7 μM). ConclusionsInhibition of amyloid fibril formation of Wil was caused by 1) EGCG binding to unfolded state rather than folded state and 2) chemical modifications of Wil by auto oxidation of EGCG. General significanceIn the competitive formation of amyloid fibrils and off-pathway oligomers, EGCG produces the latter immediately after it preferentially binds to the unfolded state. It may be general mechanism of EGCG inhibition for amyloidosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.