Abstract
Natural polyphenols, curcumin, rottlerin and EGCG were selected for initial computational modeling of protein-ligand interaction patterns. The docking calculations demonstrated that these polyphenols can easily adjust their conformational shape to fit well into the binding sites of amyloidogenic proteins. The experimental part of the study focused on the effect of rottlerin on fibrillation of three distinct amyloidogenic proteins, namely insulin, lysozyme and Aβ1–40 peptide. Different experimental protocols such as fluorescence spectroscopy, circular dichroism and atomic force microscopy, demonstrated that amyloid fibril formation of any of the three proteins is inhibited by low micromolar rottlerin concentrations. Most likely, the inhibition of amyloid formation proceeded via interaction of rottlerin with amyloidogenic regions of the studied proteins. Moreover, rottlerin was also effective in pre-formed fibrils disassembly, suggesting that interactions of rottlerin with fibrils were capable to interrupt the fibril-stabilizing bonds of β-sheets. The apparent IC50 and DC50 values were calculated in the range of 1.3–36.4 μM and 15.6–25.8 μM, respectively. The strongest inhibiting/disassembling effect of rottlerin was observed on Aβ1–40 peptide. The cytotoxicity assay performed on the Neuro 2a cells indicated time-dependent cell morphology changes but rottlerin affected the cell viability only at concentration above 50 μM. The results of this study suggest that chemical modifications on rottlerin could be tested in the future as a promising strategy for the modulation of amyloidogenic proteins aggregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.