Abstract

Oxygen diffusion across the alveolar wall is compromised by low alveolar oxygen but also by pulmonary edema, and leads to hypoxemia and hypoxic pulmonary vasoconstriction (HPV). To test, whether inhibition of alveolar fluid reabsorption results in an increased pulmonary arterial pressure and whether this effect enhances HPV, we established a model, where anesthetized rats were ventilated with normoxic (21% O2) and hypoxic (13.5% O2) gas received aerosolized amiloride and lipopolisaccharide (LPS) to inhibit alveolar fluid reabsorption. Right ventricular systolic pressure (RVsP) was measured as an indicator of pulmonary arterial pressure. Oxygen pressure (PaO2) and saturation (SaO2) in femoral arterial blood served as indicator of oxygen diffusion across the alveolar wall. Aerosolized amiloride and bacterial LPS decreased PaO2 and SaO2 and increased RVsP even when animals were ventilated with normoxic gas. Ventilation with hypoxic gas decreased PaO2 by 35 mmHg and increased RVsP by 10 mmHg. However, combining hypoxia with amiloride and LPS did not aggravate the decrease in PaO2 and SaO2 and had no effect on the increase in RVsP relative to hypoxia alone. There was a direct relation between SaO2 and PaO2 and the RVsP under all experimental conditions. Two hours but not 1 h exposure to aerosolized amiloride and LPS in normoxia as well as hypoxia increased the lung wet‐to‐dry‐weight ratio indicating edema formation. Together these findings indicate that inhibition of alveolar reabsorption causes pulmonary edema, impairs oxygen diffusion across the alveolar wall, and leads to an increased pulmonary arterial pressure.

Highlights

  • Decreased alveolar oxygen pressure (PO2) causes hypoxic pulmonary vasoconstriction (HPV), and its degree varies with the severity of hypoxia

  • Our results indicate that these treatments cause hypoxemia in rats ventilated with normoxic gas and increase right ventricular systolic pressure (RVsP)

  • In animals treated with aerosolized amiloride in normoxia the end point was not different from normoxic controls (P = 0.782), but it was decreased significantly when amiloride was combined with hypoxia (P = 0.001)

Read more

Summary

Introduction

Decreased alveolar oxygen pressure (PO2) causes hypoxic pulmonary vasoconstriction (HPV), and its degree varies with the severity of hypoxia. The oxygen sensor triggering HPV seems to be located in the smooth muscle cells (for review see (Sylvester et al 2012)). Alveolar and systemic PO2 controls this response (Marshall and Marshall 1983). Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call