Abstract

Increased expression of adhesion molecules by the activated endothelium is a critical feature of vascular inflammation associated with several disease states such as atherosclerosis. However, mechanisms regulating the endothelial induction of adhesion molecules are not entirely clear. Herein we report that inhibition of the polyol pathway enzyme aldose reductase (AR) prevents the increase in ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVECs) and decreases monocyte adhesion to these cells. In TNF-alpha-stimulated HUVECs, treatment with AR inhibitors sorbinil and tolrestat diminished NF-kappaB activity, phosphorylation and degradation of Ikappa-Balpha, and the nuclear translocation of NF-kappaB. Inhibition of AR abrogated TNF-alpha-induced activation and membrane translocation of PKC, and antisense ablation of AR prevented both TNF-alpha-induced PKC and NF-kappaB activation. However, inhibition of AR did not prevent phorbol ester-induced activation of PKC or NF-kappaB, indicating that inhibition of AR does prevents events upstream of PKC activation. These results identify a novel regulator of endothelial activation and suggest that AR is an obligatory mediator of TNF-alpha signaling leading to an increase in the expression of adhesion molecules and increased binding of monocytes to the endothelium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call