Abstract

Large amounts of microplastics (MPs) accumulate in the sludge anaerobic digestion system after being treated by the wastewater treatment plants, inevitably leading to aging and chemicals leaching. However, no information is available about the effects of aged MPs and leachates on the anaerobic digestion of sludge. In this study, the effects of different aged MPs ((polyethylene (PE), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polylactic acid (PLA)) and leachates on anaerobic methanogenesis of sludge were investigated. PLA-related treatments caused no adverse effects on anaerobic digestion. While PE-, PET-, and PVC-related treatments significantly inhibited methane production with an order of leachates (26.4–42.4 %) > MPs (16.1–22.9 %) > aged MPs (2.4–11.8 %). For different leachates, PET leachate caused the strongest inhibitory effects. The same order was found for the methane potential and hydrolysis coefficient. These results suggest that the inhibition of MPs on methanogenesis is mainly caused by the leachates. Based on biochemical and microbial community analysis, the primary mechanism is that the leachates induce oxidative stress, damaging microbial cells and reducing microbial activity, consequently inhibiting methanogenesis. Furthermore, via effect-directed analysis, methyl benzoate (MB), dimethyl phthalate (DMP), and 2,4-Di-tert-butylphenol (DTBP) were identified as key components in the PET-leachate inhibiting anaerobic methanogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call