Abstract

This study explored the immunomodulatory effect and inhibition effects of the candidate probiotic Lactococcus lactis 16-7, which was isolated from crucian carp, on Aeromonas hydrophila infection in crucian carp. The experimental fish were divided into two groups; one was fed a diet supplemented with L. lactis, while the other was fed the control probiotic-free diet. After feeding for 42 d with the experimental diets, the fish that received the diet supplemented with probiotics exhibited a significantly enhanced serum superoxide dismutase activity, phagocytic activities of innate immune cells, and the expression levels of immune-related genes [interferon-γ (INF-γ), interleukin-1β (IL-1β), interleukin-11 (IL-11), tumour necrosis factor α (TNF-α) and myeloid differentiation factor 88 (MyD88)], indicating that L. lactis 16-7 could activate the non-specific immune system of crucian carp. At the end of the feeding trial, the crucian carps in each group were orally infected with A. hydrophila NJ-35. The results show that L. lactis 16-7 could prevent the increase in d-lactic acid concentration and inflammatory response caused by A. hydrophila in crucian carp. Compared with A. hydrophila group, L. lactis 16-7 preserved the integrity of intestinal villi and mitigated A. hydrophila-induced reduce in the transcriptional levels of tight junction (TJ) proteins zonula occludens-1 (ZO-1) and occludin, indicating that L. lactis 16-7 could reduce intestinal mucosal barrier damage and inflammation induced by A. hydrophila in crucian carp. In addition, L. lactis 16-7 could effectively antagonize the colonization of A. hydrophila in the intestine. Overall, these data clearly indicate that L. lactis 16-7 has the potential to be developed as a probiotic agent against A. hydrophila infection in aquaculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call