Abstract

ADP-ribosylation factor-like 6 interacting protein 1 (ARL6IP1) is an apoptotic regulator. To investigate the role of ARL6IP1 in human cervical cancer progression, we designed and used short hairpin RNA (shRNA) to inhibit ARL6IP1 expression in CaSki cells and validated its effect on cell proliferation and invasion. Changes in gene expression were analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) or western blot. Down-regulation of ARL6IP1 expression by infection with ARL6IP1-specific RNAi-expressing vector inhibited CaSki cell proliferation and colony formation. In addition, down-regulation of ARL6IP1 expression arrested CaSki cell cycling at the G0/G1 phase and mitigated CaSki cell migration, determined by wound healing assays. ARL6IP1 was involved in cervical cancer cell growth, cell cycle progression, and invasion through regulation of gene expression, such as Caspase-3, Caspase-9, p53, TAp63, NF-κB, MAPK, Bcl-2, and Bcl-xL, suggesting that ARL6IP1 could have important implications in cervical cancer biology. Our findings illustrate the biological significance of ARL6IP1 in cervical cancer progression, and provide novel evidence that ARL6IP1 may serve as a therapeutic target in the prevention of human cervical cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.