Abstract

Adenosine monophosphate–activated protein kinase (AMPK) regulates multiple signaling pathways involved in glucose and lipid metabolism in response to changes in hormonal and nutrient status. Cell culture studies have shown that AMPK phosphorylation and inhibition of the rate‐limiting enzyme in the mevalonate pathway 3‐hydroxy‐3‐methylglutaryl (HMG) coenzyme A (CoA) reductase (HMGCR) at serine‐871 (Ser871; human HMGCR Ser872) suppresses cholesterol synthesis. In order to evaluate the role of AMPK‐HMGCR signaling in vivo, we generated mice with a Ser871‐alanine (Ala) knock‐in mutation (HMGCR KI). Cholesterol synthesis was significantly suppressed in wild‐type (WT) but not in HMGCR KI hepatocytes in response to AMPK activators. Liver cholesterol synthesis and cholesterol levels were significantly up‐regulated in HMGCR KI mice. When fed a high‐carbohydrate diet, HMGCR KI mice had enhanced triglyceride synthesis and liver steatosis, resulting in impaired glucose homeostasis. Conclusion: AMPK‐HMGCR signaling alone is sufficient to regulate both cholesterol and triglyceride synthesis under conditions of a high‐carbohydrate diet. Our findings highlight the tight coupling between the mevalonate and fatty acid synthesis pathways as well as revealing a role of AMPK in suppressing the deleterious effects of a high‐carbohydrate diet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.