Abstract

Adaptive immune responses of gammadelta T cells during active mycobacterial coinfection of human immunodeficiency virus-infected humans have not been studied. Macaques infected with the simian immunodeficiency virus (SIV) SIVmac were employed to determine the extent to which a coincident AIDS virus infection might compromise immune responses of mycobacterium-specific Vgamma2Vdelta2(+) T cells during active mycobacterial infection. Control SIVmac-negative macaques developed primary and recall expansions of phosphoantigen-specific Vgamma2Vdelta2(+) T cells after Mycobacterium bovis BCG infection and BCG reinfection, respectively. In contrast, SIVmac-infected macaques did not exhibit sound primary and recall expansions of Vgamma2Vdelta2(+) T cells in the blood and pulmonary alveoli following BCG infection and reinfection. The absence of adaptive Vgamma2Vdelta2(+) T-cell responses was associated with profound CD4(+) T-cell deficiency and subsequent development of SIVmac-related tuberculosis-like disease in the coinfected monkeys. Consistently, Vgamma2Vdelta2(+) T cells from coinfected monkeys displayed a reduced capacity to expand in vitro following stimulation with phosphoantigen. The reduced ability of Vgamma2Vdelta2(+) peripheral blood lymphocytes (PBL) to expand could be restored to some extent by coculture of these cells with CD4(+) T cells purified from PBL of SIV-negative monkeys. Furthermore, naïve monkeys inoculated simultaneously with SIVmac and BCG were unable to sustain expansion of Vgamma2Vdelta2(+) T cells at the time that the coinfected monkeys developed lymphoid depletion and a fatal tuberculosis-like disease. Nevertheless, no deletion in Vdelta2 T-cell receptor repertoire was identified in SIVmac-BCG-coinfected macaques, implicating an SIVmac-induced down-regulation rather than a clonal exhaustion of these cells. Thus, an SIVmac-induced compromise of the adaptive Vgamma2Vdelta2(+) T-cell responses may contribute to the immunopathogenesis of the SIV-related tuberculosis-like disease in macaques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call