Abstract

Basal membrane permeability of epithelial cells from the lower third and the middle of rat colonic crypts is dominated by a K + conductance as shown by ion replacement experiments. Calyculin A, an inhibitor of protein phosphatases, induced a depolarization of these cells. The depolarization was concomitant with an inhibition of membrane current. The current inhibited by calyculin A had a reversal potential identical with the theoretical K + equilibrium potential indicating that the drug inhibits a basal K + conductance. The efficiency of calyculin A was comparable with that of other well-known K + channel blockers such as Ba 2+, tetraethylammonium or quinine. In the intact tissue, calyculin A exerted an inhibitory action on forskolin-induced anion secretion, an effect which may be explained by the decrease in the driving force for Cl − exit after inhibition of cellular K + conductance. Together with previous results, these data suggest an inhibition of epithelial K + conductance by phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.