Abstract

The specific activity of 5′-nucleotidase activity in cell-free extracts of Dictyostelium discoideum at both exponential and stationary growth phases was determined. The 5′-nucleotidase activity of both membrane and soluble fractions was determined. The results show that at exponential growth more activity is found in the soluble fraction. Furthermore, the results show that stationary phase cells contain about 10-fold less activity than cells at exponential growth. To determine if stationary phase cells contained an inhibitor of 5′-nucleotidase, purified membranes were incubated with a high speed supernatant (S-100) prepared from cells at this stage. The results showed not only a time and concentration dependent loss of membrane bound activity, but also that most of the lost activity could be recovered in a soluble form. This result suggested that the 5′-nucleotidase was being released by a factor in the S-100. Additional studies showed inactivation of the releasing factor by a protease and further, that this inactivation could be prevented by serine protease inhibitors. The specificity of releasing factor with respect to two other membrane bound activities was determined. The results indicated no loss of either 3′5′-cyclic phosphodiesterase or adenylate cyclase. In addition, the results of a comparison of the activity of the releasing factor at two stages of growth showed similar values at both exponential and stationary growth phase. This latter finding suggests that the loss of 5′-nucleotidase activity at stationary phase is not due to modulation of the releasing factor activity. An alternative mechanism is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call