Abstract

Serotonergic 5-HT(1A) receptor signaling leading to nuclear factor-kappaB (NF-kappaB) activation appears to be critical for cell survival. Adenylyl cyclase and protein kinase A (AC/PKA) are effectors of the 5-HT(1A) receptor that are inhibited by Galpha(i) subunits. Conversely, Gbetagamma(i) subunits downstream from the 5-HT(1A) receptor participate in the activation of extracellular signal-regulated kinases (ERK1/2), phosphatidylinositol 3-kinase (PI3K), Akt, and NF-kappaB. To model the contribution of pro- and antiapoptotic signaling cascades downstream of activated 5-HT(1A) receptor in cell survival, Chinese hamster ovarian (CHO) cells were employed that exogenously overexpress 5-HT(1A) receptors. Stimulation with the 5-HT(1A) receptor agonist 8-OH-DPAT and pharmacological agonists of AC induced PKA and protein phosphatase 2A (PP2A) activity, which in turn inhibited: Akt activity, IkappaBalpha degradation, nuclear translocation of NF-kappaB, and expression of X-linked inhibitor of apoptosis protein (XIAP/BIRC4). Pharmacological inhibition of PP2A with calyculin A potentiated Akt activity while attenuating ERK1/2 signaling via increased inhibitory phosphorylation of Raf (pSer259). In contrast, increased cAMP levels enhanced Bax translocation to the mitochondria, resulting in the release of cytochrome c, caspase-3 activation, and apoptosis induction. Our data suggest a central role of cAMP/PKA-dependent PP2A in shifting the homeostasis of intracellular signaling downstream of activated 5-HT(1A) receptor toward cell death in biological systems linked to neuropsychiatric disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call