Abstract

High cholesterolemia is a key risk factor for the development of cardiovascular diseases, which are the main cause of mortality in developed countries. Most therapies are focused on the modulation of its biosynthesis through 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoAR) inhibitors. In this sense, food-derived bioactive peptides might act as promising health alternatives through their ability to interact with crucial enzymes involved in metabolic pathways, avoiding the adverse effects of synthetic drugs. Dry-cured ham has been widely described as an important source of naturally-generated bioactive peptides exerting ACEI-inhibitory activity, antioxidant activity, and anti-inflammatory activity between others. Based on these findings, the aim of this work was to assess, for the first time, the in vitro inhibitory activity of HMG-CoAR exerted by dipeptides generated during the manufacturing of dry-cured ham, previously described with relevant roles on other bioactivities.The in vitro inhibitory activity of the dipeptides was assessed by measuring the substrate consumption rate of the 3-hydroxy-3-methylglutaryl CoA reductase in their presence, with the following pertinent calculations.Further research was carried out to estimate the possible interactions of the most bioactive dipeptides with the enzyme by performing in silico analysis consisting of molecular docking approaches.Main findings showed DA, DD, EE, ES, and LL dipeptides as main HMG-CoAR inhibitors. Additionally, computational analysis indicated statin-like interactions of the dipeptides with HMG-CoAR.This study reveals, for the first time, the hypocholesterolemic potential of dry-cured ham-derived dipeptides and, at the same time, converges in the same vein as many reports that experimentally argue the cardiovascular benefits of dry-cured ham consumption due to its bioactive peptide content.

Highlights

  • Hypercholesterolemia leads to a pathogenic accumulation of low-density-lipoproteins (LDL) in blood vessels and the formation of atherosclerotic plaques, highly associated with the development of cardiovascular diseases (CVDs), which are one of the main global causes of death (Gallego et al 2019a; Nagaoka 2019; Zalesin et al 2011)

  • The assayed dipeptides were chosen for being previously reported to be present in dry-cured ham by tandem mass spectrometry and in silico approaches (Kęska & Stadnik 2017; Mora et al 2019; Zhou et al 2020)

  • The dipeptides were selected for their potential to act as multifunctional peptides due to they have already been confirmed in previous experiments to be able to exert other biological activities

Read more

Summary

Introduction

Hypercholesterolemia leads to a pathogenic accumulation of low-density-lipoproteins (LDL) in blood vessels and the formation of atherosclerotic plaques, highly associated with the development of cardiovascular diseases (CVDs), which are one of the main global causes of death (Gallego et al 2019a; Nagaoka 2019; Zalesin et al 2011). The aim of prevention and treatment of human diseases has led to discover food compounds which may serve as agents against several disorders. In this sense, food-derived peptides can present low toxicity and accumulation in tissue (La Manna et al 2018). Dietary bioactive peptides could mean a simple way of therapy avoiding treatments with side effects (Yao et al 2018)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.