Abstract
Nicotinic acetylcholine receptors (nAChRs) were studied in detail in the past regarding their interaction with therapeutic and drug addiction related compounds. Using fast kinetic whole-cell recording, we have now studied effects of tacrine, an agent used clinically to treat Alzheimer's disease, on currents elicited by activation of rat α(3)β(4) nAChR heterologously expressed in KXα3β4R2 cells. Characterization of receptor activation by nicotine used as agonist revealed a K(d) of 23 ± 0.2 μM and 4.3 ± 1.3 for the channel opening equilibrium constant, Φ(-1). Experiments were performed to investigate whether tacrine is able to activate the α(3)β(4) nAChR. Tacrine did not activate whole-cell currents in KXα3β4R2 cells but inhibited receptor activity at submicromolar concentration. Dose-response curves obtained with increasing agonist or inhibitor concentration revealed competitive inhibition of nAChRs by tacrine, with an apparent inhibition constant, K(I), of 0.8 μM. The increase of Φ(-1) in the presence of tacrine suggests that the drug stabilizes a nonconducting open channel form of the receptor. Binding studies with TCP and MK-801 ruled out tacrine binding to common allosteric sites of the receptor. Our study suggests a novel mechanism for action of tacrine on nAChRs besides inhibition of acetylcholine esterase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.