Abstract

Microsomal long chain fatty acid CoA ligase (EC 6.2.1.3) has been implicated in the formation of CoA thioesters of xenobiotics containing a carboxylic acid moiety. In this study we have demonstrated that the microsomal enzyme from rat liver exhibits biphasic kinetics for the formation of palmitoyl-CoA, i.e. there are high affinity low capacity K m high , 1.6 μM, V max high , 12.9 nmol/ mg/ min) and low affinity high capacity ( K m low , 506 μM, V max low , 58.3 nmol/ mg/ min) components. Inhibition of the high affinity isoform was studied using the R and S enantiomers of ibuprofen, fenoprofen, ketoprofen and naproxen. The high affinity component of palmitoyl-CoA formation was competitively inhibited by R-fenoprofen( K i 15.4 μM) while R-ibuprofen exhibited mixed inhibition kinetics. In contrast the R and S enantiomers of ketoprofen and naproxen were non-competitive inhibitors. This diversity of inhibition kinetics observed argues in favour of a binding site in addition to the catalytic site. A competitive interaction with the high affinity form correlated with literature evidence of enantiospecific chiral inversion and “hybrid” triglyceride formation for the R enantiomers of fenoprofen and ibuprofen. Paradoxically, R-ketoprofen which is extensively inverted in rats was a non-competitive inhibitor of palmitoyl-CoA formation by the high affinity isoform suggesting that it may not act as an alternate substrate. The results of this study clearly indicate that formation of R-2-arylpropionate-CoAs is not fully explained by interaction with the high affinity isoform of a microsomal long chain (palmitoyl) CoA ligase and therefore the involvement of other isofonns cannot be discounted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.