Abstract

In rat liver hypo-osmotically treated mitochondria, 2-mercaptoacetate inhibits respiration induced by palmitoyl-CoA, octanoate or butyryl-CoA only when the reaction medium is supplemented with ATP. Under this condition, NADH-stimulated respiration is not affected. In liver mitochondrial matrix, the presence of ATP is also required to observe a 2-mercaptoacetate-induced inhibition of acyl-CoA dehydrogenases tested with palmitoyl-CoA, butyryl-CoA or isovaleryl-CoA as substrate. As the oxidation of these substrates is also inhibited by the incubation medium resulting from the reaction of 2-mercaptoacetate with acetyl-CoA synthase, with conditions under which 2-mercaptoacetate has no effect, 2-mercaptoacetyl-CoA seems to be the likely inhibitory metabolite responsible for the effects of 2-mercaptoacetate. Kinetic experiments show that the main effect of the 2-mercaptoacetate-active metabolite is to decrease the affinities of fatty acyl-CoA dehydrogenases towards palmitoyl-CoA or butyryl-CoA and of isovaleryl-CoA dehydrogenase towards isovaleryl-CoA. Addition of N-ethylmaleimide to mitochondrial matrix pre-exposed to 2-mercaptoacetate results in the immediate reversion of the inhibitions of palmitoyl-CoA and isovaleryl-CoA dehydrogenations and in a delayed reversion of butyryl-CoA dehydrogenation. These results led us to conclude that (i) the ATP-dependent conversion of 2-mercaptoacetate into an inhibitory metabolite takes place in the liver mitochondrial matrix and (ii) the three fatty acyl-CoA dehydrogenases and isovaleryl-CoA dehydrogenase are mainly competitively inhibited by this compound. Finally, the present study also suggests that the inhibitory metabolite of 2-mercaptoacetate may bind non-specifically to, or induce conformational changes at, the acyl-CoA binding sites of these dehydrogenases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.