Abstract

Recurring sequences of neuronal activation in the hippocampus are a candidate for a neurophysiological correlate of episodic memory. Here, we discuss a mean-field theory for such spike sequences in phase space and show how they become unstable when the neuronal network operates at maximum memory capacity. We find that inhibitory feedback rescues replay of the sequences, giving rise to oscillations and thereby enhancing the network's capacity. We further argue that transient sequences in an overloaded network with feedback inhibition may provide a mechanistic picture of memory-related neuronal activity during hippocampal sharp-wave ripple complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.