Abstract

N-benzoyl-L-phenylalanyl-L-phenylalanine is an excellent peptide substrate for carboxy-peptidase A; at 30°C and pH 7.5, Km is 2.6 × 10−5 M while kcat is 177 s−1 (kcat/Km = 6.8 × 106 M−1 s−1). Indole-3-acetic acid is a noncompetitive or mixed inhibitor towards the peptide and toward hippuryl-L-phenylalanine; plots of E/V vs [Inhibitor] are linear. N-Benzoyl-L-phenylalanine is a competitive inhibitor of peptide hydrolysis, and plots of E/V vs [Inhibitor] are again linear. One molecule of inhibitor binds per active site, and these inhibitors bind in different sites. At constant peptide substrate concentration and a series of constant concentrations of indole-3-acetic acid, plots of E/V vs the concentration of N-benzoyl-L-phenylalanine are linear and intersect behind the E/V axis and above the [Inhibitor] axis. This shows that both inhibitors can bind simultaneously and that binding of one facilitates the binding of the other (β = 0.18). Employing the ester substrate hippuryl-DL,β-phenyllactate, the same type of behavior is observed in the reverse sense; N-benzoyl-L-phenylalanine is a linear noncompetitive inhibitor and indole-3-acetic acid is a linear competitive inhibitor. Again the two inhibitor plot is linear and intersects above the [Inhibitor] axis (β = 0.12). Previous X-ray crystallographic studies have indicated that indole-3-acetic acid binds in the hydrophobic pocket of the S′1 site, while N-benzoyl-L-phenylalanine binds in the S1−S2 site. The product complex for hydrolysis of N-benzoyl-L-phenylalanyl-L-phenylalanine (phenylalanine + N-benzoyl-L-phenylalanine) occupies both of these sites. However, the present work shows that the peptide substrate does not bind to the enzyme at pH 7.5 so as to be competitive with indole-3-acetic acid. The binding sites may be formed via conformational changes induced or stabilized by substrate and product binding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.