Abstract
Microbiologically influenced corrosion (MIC) is a common phenomenon in water treatment, shipping, construction, marine and other industries. Sulfate-reducing bacteria (SRB) often lead to MIC. In this paper, a strain of Pseudomonas stutzeri (P. stutzeri) with the ability to inhibit SRB corrosion is isolated from the soil through enrichment culture. P. stutzeri is a short, rod-shaped, white and transparent colony with denitrification ability. Our 16SrDNA sequencing results verify the properties of P. stutzeri strains. The growth conditions of P. stutzeri bacteria and SRB are similar, and the optimal culture conditions are about 30 °C, pH 7, and the stable stage is reached in about seven days. The bacteria can coexist in the same growth environment. Using the weight loss method, electrochemical experiments and composition analysis techniques we found that P. stutzeri can inhibit the corrosion of X70 steel by SRB at 20~40 °C, pH 6~8. Furthermore, long-term tests at 3, 6 and 9 months reveal that P. stutzeri can effectively inhibit the corrosion of X70 steel caused by SRB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.