Abstract

Keloids are excessive fibroproliferative diseases that are caused by abnormal wound healing. The anti-proliferative activity of Physalis angulata compounds has potential as a keloid therapeutic agent. This study aimed to observe the effects of P. angulata on fibroblast viability and collagen type I, tissue inhibitor of metalloproteinase 1 (TIMP-1), and plasminogen activator inhibitor 1 (PAI-1) levels in human keloid fibroblasts. We conducted an experimental study of P. angulata ethanol extract on three primary human keloid fibroblast 3 passage cultures with four replications. Fibroblast viability was measured using the MTT assay after incubation with 3, 5, and 10 µg/mL P. angulata. Concentrations of P. angulata used to observe effects on TIMP-1, PAI-1, and collagen type I levels were 10%, 20%, 30%, and 40% of inhibitory concentration 50 (IC50). The levels of collagen type I, TIMP-1, and PAI-1 were measured by ELISA. Mean comparisons between multiple treatment groups were analyzed using one-way ANOVA followed by post-hoc analysis. The 10 µg/mL P. angulata group had significantly lower fibroblast viability than the control group (p<0.05) with an IC50 6.3 µg/mL. The collagen type I level of 10% IC50 (0.63 µg/mL) P. angulata group was lower than control (12.910 vs 47.866 ng/mL) (p=0.042). Level of TIMP-1 in 40% IC50 (2.51 µg/mL) P. angulata group was lower than control (5.350 vs 9.972 ng/mL) (p=0.043). There was no significant difference in the PAI-1 levels. This study showed the inhibitory effect of 10 µg/mL P. angulata extract on keloid fibroblast viability, with an IC50 of 6.3 µg/mL. This study also showed collagen type-1 and TIMP-1 inhibition, but not PAI-1 inhibition, after P. angulate treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call