Abstract

In-stent restenosis can be caused by the activation, proliferation and migration of vascular smooth muscle cells (VSMCs), which affects long-term efficacy of interventional therapy. Copper (Cu) has been proved to accelerate the endothelialization and reduce thrombosis formation, but little is known about its inhibition effect on the excessive proliferation of VSMCs. In this study, 316L-Cu stainless steel and L605-Cu cobalt-based alloy with varying Cu content were fabricated and their effects on surface property, blood compatibility and VSMCs were studied in vitro and in vivo. CCK-8 assay and EdU assay indicated that the Cu-bearing metals had obvious inhibitory effect on proliferation of VSMCs. Blood clotting and hemolysis tests showed that the Cu-bearing metals had good blood compatibility. The inhibition effect of the Cu-bearing metals on migration of cells was detected by Transwell assay. Further studies showed that Cu-bearing metals significantly decreased the mRNA expressions of bFGF, PDGF-B, HGF, Nrf2, GCLC, GCLM, NQO1 and HO1. The phosphorylation of AKT and Nrf2 protein expressions in VSMCs were significantly decreased by Cu-bearing metals. Furthermore, it was also found that SC79 and TBHQ treatments could recover the protein expressions of phospho-AKT and Nrf2, and their downstream proteins as well. Moreover, 316L-Cu stent proved its inhibitory action on the proliferation of VSMCs in vivo. In sum, the results demonstrated that the Cu-bearing metals possessed apparent inhibitory effect on proliferation and migration of VSMCs via regulating the AKT/Nrf2/ARE pathway, showing the Cu-bearing metals as promising stent materials for long-term efficacy of implantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.