Abstract
Purpose Bdellovibrio bacteriovorus is a gram-negative predatory bacterium which can potentially inhibit microbiologically influenced corrosion by preying on sulfate-reducing bacteria (SRB). However, no researches about the inhibition are reported according to the authors’ knowledge. The purpose of this paper was to investigate the Inhibition effect of B. bacteriovorus on the corrosion of X70 pipeline steel induced by SRB. Design/methodology/approach The effect of B. bacteriovorus on the growth of SRB was studied by measuring the optical density at 600 nm (OD600) and sulfate concentration in culture medium. X70 pipeline steel was used as the test material to investigate the anti-corrosion effect of B. bacteriovorus on SRB by conducting electrochemical analysis (including Tafel polarization curves and electrochemical impendence spectroscopy) and weight loss measurement. Findings B. bacteriovorus could inhibit the growth of SRB in culture medium by its predation on SRB, which led to decrease of OD600 value and increase of sulfate concentration. The results of electrochemical analysis indicated that B. bacteriovorus had positive inhibition efficiencies on SRB-induced corrosion of X70 pipeline steel. Moreover, corrosion rate of X70 pipeline steel was declined from 19.17 to 3.75 mg·dm-2·day-1 by the presence of B. bacteriovorus. Originality/value This is the first report about using B. bacteriovorus to inhibit the corrosion induced by SRB. Compared to other anti-corrosion methods, the microbial inhibition methods exhibit more considerable application value due to its low cost, high efficiency and non-pollution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.