Abstract

Small bowel transplantation (SBT) is complicated by changes in graft motility, especially in the early postoperative period. This dysmotility may be related in part to the extrinsic denervation necessitated by the procedure, but specific neurotransmitter response to SBT is incompletely understood. The aim of this study was to evaluate the role of nitric oxide and nonadrenergic, noncholinergic (NANC) enteric neural input in the nonimmunologic etiology of the dysmotility seen after SBT. A technique of jejunoileal extrinsic denervation (without disruption of mesenteric vascular supply) was used as a model of canine jejunoileal autotransplantation to avoid potential confounding factors such as ischemia-reperfusion and postallotransplant immunologic effects. Longitudinal smooth muscle strips from ileum and jejunum were studied with in vitro tissue chamber methodology at 0, 2, and 8 weeks after this experimental model to explore early and late effects of denervation. Effects of exogenous nitric oxide (NO) and electric field stimulation (EFS), which releases native, endogenous enteric neurotransmitters) were evaluated in neurally intact control dogs and those undergoing extrinsic denervation. Exogenous NO caused a dose-dependent inhibition of spontaneous contractile activity and in some muscle strips a decrease in basal tone in both groups of dogs. These effects were unchanged by neural blockade with tetrodotoxin and preserved after extrinsic denervation. EFS produced inhibition of spontaneous contractile activity in ileum and a complex, inconsistent response in jejunum. The response to EFS in both ileum and jejunum was unchanged after extrinsic denervation. Nitric oxide inhibits contractile activity in canine longitudinal muscle of small bowel. Motility changes seen after this large animal model of extrinsic denervation are not caused by changes in NO or NANC neural function. The variability observed between different segments of intestine is important to consider in the context of SBT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call