Abstract

A membrane-associated form of phosphate-dependent glutaminase was derived from sonicated mitochondria and purified essentially free of gamma-glutamyl transpeptidase activity. Increasing concentrations of phosphate cause a sigmoidal activation of the membrane-bound glutaminase. Phosphate also causes a similar effect on the rate of glutaminase inactivation by the two affinity labels, L-2-amino-4-oxo-5-chloropentanoic acid and 6-diazo-5-oxo-L-norleucine, as observed previously for the solubilized and purified enzyme. Therefore the two forms of glutaminase undergo similar phosphate-induced changes in conformation. A sensitive radioactive assay was developed and used to determine the kinetics of glutamate inhibition of the membrane-associated glutaminase. The Km for glutamine decreases from 36 to 4 mM when the phosphate concentration is increased from 5 to 100 mM. Glutamate is a competitive inhibitor with respect to glutamine at both high and low concentrations of phosphate. However, the Ki for glutamate is increased from 5 to 52 mM with increasing phosphate concentration. Therefore glutamine and glutamate interact with the same site on the glutaminase, but the specificity of the site is determined by the available phosphate concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.