Abstract
In a previous work we have reported that gangliosides inhibit interleukin 1 (IL-1) release by human monocytes stimulated with lipopolysaccharides (LPS). In the present study we extend this work to IL-1 production and we correlate these observations with the capacity of gangliosides to inhibit the binding of radiolabeled LPS to its specific receptor on human monocytes. Preincubation of 3H-LPS with crude bovine brain gangliosides, as well as purified human brain mono, di, and trisialogangliosides (GM1, GD1a, and GT1b, respectively), led to an inhibition of the specific binding of LPS to the cell surface. Neither ceramide nor N-acetyl neuraminic acid, two constituents of gangliosides, was able by itself to inhibit the specific binding. A strict parallelism was observed with respect to inhibition on LPS-induced IL-1 production and release. Asialoganglioside (asialo-GM1) was inactive in both assays, suggesting that the N-acetyl neuraminic acid plays a role within the ganglioside molecule, with respect to inhibitory activity. We conclude that LPS-induced production and release by human monocytes is not due to a signal triggered by nonspecific absorption and/or intercalation of LPS into cell membrane which occur through hydrophobic interaction mediated by the lipid A region. Addition of exogenous sialogangliosides which blocked LPS-induced IL-1 production and release, did not modify significantly the nonspecific binding of 3H-LPS, whereas it did inhibit the specific binding which is mediated by the polysaccharide moiety of the LPS molecule. These results establish a relationship between the specific endotoxin receptor on monocytes and a LPS-induced cellular function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.