Abstract

Young children, when performing problem solving tasks, show a tendency to break task rules and produce incomplete solutions. We propose that this tendency can be explained by understanding problem solving within the context of the development of “executive functions” – general cognitive control functions, which serve to regulate the operation of the cognitive system. This proposal is supported by the construction of two computational models that simulate separately the performance of 3–4 year old and 5–6 year old children on the Tower of London planning task. We seek in particular to capture the emerging role of inhibition in the older group. The basic framework within which the models are developed is derived from Fox and Das’ Domino model [Fox, J., & Das, S. (2000). Safe and sound: Artificial intelligence in hazardous applications. Cambridge, MA: MIT Press] and Norman and Shallice’s [Norman, D.A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behaviour. In R. Davidson, G. Schwartz, & D. Shapiro (Eds.), Consciousness and Self Regulation (Vol. 4). New York: Plenum] theory of willed and automatic action. Two strategies and a simple perceptual bias are implemented within the models and comparisons between model and child performance reveal a good fit for the key dependent measures (number of rule breaks and percentage of incomplete solutions) of the two groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.