Abstract

Advanced glycation end-products (AGEs), unregulated modifications to host macromolecules that occur as a result of metabolic dysregulation, play a role in many diabetes related complications, inflammation and aging, and may lead to increased cardiovascular risk. Small molecules that have the ability to inhibit AGE formation, and even break preformed AGEs have enormous therapeutic potential in the treatment of these disease states. We report the screening of a series of 2-aminoimidazloles for anti-AGE activity, and the identification of a bis-2-aminoimidazole lead compound that possesses superior AGE inhibition and breaking activity compared to the known AGE inhibitor aminoguanidine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.