Abstract
Research into the neural mechanisms that underlie higher-order cognitive control of eating behavior suggests that ventral hippocampal (vHC) neurons, which are critical for emotional memory, also inhibit energy intake. We showed previously that optogenetically inhibiting vHC glutamatergic neurons during the early postprandial period, when the memory of the meal would be undergoing consolidation, caused rats to eat their next meal sooner and to eat more during that next meal when the neurons were no longer inhibited. The present research determined whether manipulations known to interfere with synaptic plasticity and memory when given pretraining would increase energy intake when given prior to ingestion. Specifically, we tested the effects of blocking vHC glutamatergic N-methyl-D-aspartate receptors (NMDARs) and activity-regulated cytoskeleton-associated protein (Arc) on sucrose ingestion. The results showed that male rats consumed a larger sucrose meal on days when they were given vHC infusions of the NMDAR antagonist APV or Arc antisense oligodeoxynucleotides than on days when they were given control infusions. The rats did not accommodate for that increase by delaying the onset of their next sucrose meal (i.e., decreased satiety ratio) or by eating less during the next meal. These data suggest that vHC NMDARs and Arc limit meal size and inhibit meal initiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.