Abstract

ABSTRACT Obesity is a low-grade chronic inflammation induced by the pathological expansion of adipocytes which allows the development of obesity-associated metabolic diseases like type 2 diabetes mellitus (T2D) and non-alcoholic fatty liver disease (NAFLD). However, mechanisms regulating adipocyte inflammation remain poorly understood. Here, we observed that TRIM8 was upregulated in adipocyte inflammation and insulin resistance while DUSP14 was downregulated. TRIM8 deficiency and DUSP14 over-expression decreased the level of inflammatory cytokines, increased glucose uptake content, and improved insulin signalling transduction compared to LPS treatment alone. Conversely, silencing DUSP14 increased the expression of inflammatory cytokines. It decreased the glucose uptake content and the phosphorylation level of proteins involved in insulin signalling, further impairing insulin signalling and aggravating insulin resistance. Furthermore, The decreased level of inflammatory cytokines, increased glucose uptake, and improved insulin signalling transduction caused by TRIM8 deficiency were reversed by down-regulated DUSP14. Collectively, our findings revealed that TRIM8 can regulate adipocyte inflammation and insulin resistance by regulating the MAPKs pathway which is dependent on DUSP14.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.