Abstract

Marine cultured fish often suffer from Cryptocaryon irritans infection, which causes enormous mortality. C. irritans is resistant to oxidative damage induced by zinc. To develop an effective drug to control the parasite, a putative thioredoxin glutathione reductase (CiTGR) from C. irritans was cloned and characterized. CiTGR was designed as a target to screen for inhibitors by molecular docking. The selected inhibitors were tested both in vitro and in vivo. The results showed that CiTGR is located in the nucleus of the parasite, possesses a common pyridine-oxidoreductases redox active center, and lacks a glutaredoxin active site. Recombinant CiTGR exhibited high TrxR activity but low glutathione reductase activity. Shogaol was found to significantly suppress TrxR activity and enhance toxicity of zinc on C. irritans (P < 0.05). The abundance of C. irritans on the fish body decreased significantly after oral administration of shogaol (P < 0.05). These results implied that CiTGR could be used to screen for drugs that weaken the resistance of C. irritans to oxidative stress, which is critical for controlling the parasite in fish. This paper deepens the understanding of the interaction between ciliated parasites and oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call