Abstract

Background and purposeUndifferentiated follicular and anaplastic thyroid tumours often respond poorly to radiotherapy and show increased metastatic potential. We evaluated radiation-induced effects on metastasis in thyroid carcinoma cells and tumours, mechanistically focusing on phosphatidylinositide 3-kinase (PI3K) and associated pathways. Material and methodsMigration was analysed in follicular (FTC133) and anaplastic (8505c) cells following radiotherapy (0–6 Gray) with concomitant pharmacological (GDC-0941) or genetic inhibition of PI3K. Hypoxia-inducible factor-1 (HIF-1)-activity was measured using luciferase reporter assays and was inhibited using a dominant-negative variant. Activation and subcellular localisation of target proteins were assessed via Western blot and immunofluorescence. In vivo studies used FTC133 xenografts with metastatic lung dissemination assessed ex vivo. ResultsRadiation induced migration in a HIF-dependent manner in FTC133 cells but decreased migration in 8505c’s. Post-radiation HIF-activity correlated with migratory phenotype. PI3K-targeting inhibited migration under basal and irradiated conditions through inhibition of HIF-1α, Rho-GTPase expression/activity and localisation whilst having little effect on src/FAK. In vivo, radiation induced PI3K, HIF, Rho-GTPases and src but only PI3K, HIF and Rho-GTPases were inhibited by GDC-0941. Co-treatment with GDC-0941 and radiation significantly reduced metastatic dissemination versus radiotherapy alone. ConclusionsRadiation modifies metastatic characteristics of thyroid carcinoma cells, which can be successfully inhibited by targeting PI3K using GDC-0941 in vitro and in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.