Abstract

Our previous study has demonstrated that glucagon-like peptide-1 (GLP-1) receptor agonist could protect neurons from advanced glycation end products (AGEs) toxicity in vitro. However, further studies are still needed to clarify the molecular mechanism of this GLP-1 receptor -dependent action. The present study mainly focused on the effect of GLP-1 receptor agonists against the receptor for advanced glycation end products (RAGE) signal pathway and the mechanism underlying this effect of GLP-1. Firstly the data based on the SH-GLP-1R+ and SH-SY5Y cells confirmed our previous finding that GLP-1 receptor could mediate the protective effect against AGEs. The assays of the protein activity and of the mRNA level revealed that apoptosis-related proteins such as caspase-3, caspase-9, Bax and Bcl-2 were involved. Additionally, we found that both GLP-1 and exendin-4 could reduce AGEs-induced reactive oxygen species (ROS) accumulation by suppressing the activity of nicotinamide adenine dinucleotide phosphate-oxidase. Interestingly, we also found that GLP-1 receptor activation could attenuate the abnormal expression of the RAGE in vitro and in vivo. Furthermore, based on the analysis of the protein expression and translocation level of transcription factor nuclear factor-κB (NF-κB), and the use of GLP-1 receptor antagonist exendin(9-39) and NF-κB inhibitor pyrrolidine dithiocarbamate, we found that the effect mediated by GLP-1 receptor could alleviate the over expression of RAGE induced by ligand via the suppression of NF-κB. In summary, the results indicated that inhibiting RAGE/oxidative stress was involved in the protective effect of GLP-1 on neuron cells against AGEs induced apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call