Abstract
AbstractLi‐rich Mn‐rich layered oxides (LRLO) are considered promising cathode materials for high energy density storage because of their very high capacities that owe to the reversible redox of oxide anions. However, LRLO cathodes also evolve reactive oxygen species on charge, especially in the first formation cycles, which leads to reactivity with the electrolyte at the surface, reconstruction of surface layers, and deleterious impedance growth. Here, a strategy to enhance the cycle performance of a Li‐rich Mn‐rich layered cathode is demonstrated by scavenging the evolved oxygen species with a polydopamine (PDA) surface coating. PDA, a well‐known oxygen radical scavenger, provides a chemically protective layer that diminishes not only the growth of the undesirable cathode electrolyte interphase but also results in less oxygen gas release compared to an unprotected surface, and significantly suppressed phase transformation at the surface. These factors lead to improved rate capability and diminished capacity fading on cycling; namely a capacity fade of 82% over 200 cycles at a C rate for the PDA‐coated LRLO, compared to 70% for the bare LRLO material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.