Abstract

Atherosclerosis is a chronic inflammatory disease of the arterial wall caused by many factors. Endothelial cell dysfunction is the initial factor in the development of atherosclerosis, and ROS activates the assembly of inflammasomes and induces the pyroptosis of vascular endothelial cells. Whether H2O2 induced human aortic endothelial cells (HAECs) pyroptosis and the underlying mechanisms remain unclear. This study aimed to investigate the role of microRNA-200a-3p in H2O2-induced HAECs pyroptosis. First, we found that the pyroptosis-related protein was upregulated in aortia in HFD apoE-/- mice. The in vitro study showed that the activation of NLRP3 inflammasomes and the pyroptosis in H2O2-induced HAECs, which is characterized by an increase in Lactate dehydrogenase (LDH) activity, and an increase in propidium iodide (PI)-positive cells. The expression of silent information regulator of transcription 1 (SIRT1) was also decreased in H2O2-induced HAECs, and the overexpression of SIRT1 could reverse the occurrence of pyroptosis, partly through p65 deacetylation, thereby inhibiting nuclear translocation of p65 and regulating NLRP3 expression. Further studies revealed increased miRNA-200a-3p expression in H2O2-induced HAECs and the promotion of pyroptosis, which was achieved by targeting SIRT1. Inhibition of miR-200a-3p reduced pyroptosis by promoting the expression of the downstream target gene SIRT1 and reducing the accumulation of p65 and NLRP3. Collectively, our results suggest that H2O2 can regulate NLRP3 inflammasomes through the miR-200a-3p/SIRT1/NF-κB (p65) signaling pathway and promote HAEC pyroptosis. The miR-200a-3p inhibitor can promote the expression of SIRT1 and inhibit pyroptosis, which may be important to prevent and treat atherosclerosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.