Abstract

Matrix metalloproteinases (MMPs) play key roles in remodeling of the extracellular matrix during embryogenesis and fetal development. The objective of this study was to determine the effects of prinomastat, a potent selective MMP inhibitor, on fetal growth and development. Prinomastat (25, 100, 250 mg/kg/day, p.o.) was administered to pregnant female Sprague-Dawley rats on gestational days (GD) 6-17. A Cesarian section was carried out on GD 20 and the fetuses were evaluated for viability and skeletal and soft tissue abnormalities. Prinomastat treatment at the 250 mg/kg/day dose produced a decrease in body weight and food consumption in the dams. A dose-dependent increase in post-implantation loss was observed in the 100 and 250 mg/kg/day-dose groups, resulting in only 22% of the dams having viable litters for evaluation at the 250 mg/kg/day dose. Fetal skeletal tissue variations and malformations were present in all prinomastat treated groups and their frequency increased with dose. Variations and malformation in fetal soft tissue were also increased at the 100 and 250 mg/kg/day doses. Prinomastat also interfered with fetal growth of rat embryo cultures in vitro. These data confirm that MMP inhibition has a profound effect on fetal growth and development in vivo and in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call