Abstract

Inhibiting Leidenfrost phenomenon has been conventionally mediated by texturing materials to facilitate the solid-liquid contact or by arranging vapor channels to promote vapor evacuation. However, it remains challenging to break the trade-off between the high Leidenfrost point and the high heat transfer efficiency because elevating Leidenfrost point is often accompanied by the increase of thermal resistance. We propose a method using Rayleigh-Bénard-Marangoni convection and non-solvent induced phase separation to create granulated matrices that prevent the Leidenfrost effect at temperatures up to 400 °C. These matrices offer strong capillary adhesion, ensuring water droplets remain pinned and provide effective cooling. Additionally, the unique bubble dynamics prevent film boiling and Leidenfrost levitation. The matrices are mechanically robust and thermally stable, making them suitable for cooling high-power electronic devices at high temperatures. These results highlight the potential of using polymer matrices for cooling devices at elevated temperatures, potentially advancing cooling technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.