Abstract
Tomato (Lycopersicon esculentum Mill.) ripening-associated membrane protein (TRAMP) is a channel protein of the membrane intrinsic protein (MIP) class encoded by the cDNA clone pNY507 [R.G. Fray et al. (1994) Plant Mol Biol 24: 539-543]. It has been suggested that these proteins encode water channels or aquaporins. TRAMP mRNA accumulated in all tomato tissues tested and was elevated in fruit during post-anthesis development and again during ripening. Transgenic plants that constitutively expressed a TRAMP antisense RNA sequence were generated with a 94% reduction of endogenous TRAMP mRNA in fruit. They showed no obvious phenotype that could be associated with gross perturbation of water relations, but ripening fruit of these plants showed marked alterations in the normal pattern of accumulation of both organic acids and sugars. At the onset and during ripening, levels of the organic acids L-malate and citrate were significantly elevated while levels of D[+]-glucose and D[+]-fructose were reduced. Additional transgenic lines were generated with reduced TRAMP mRNA, and the phenotype of increased acids and reduced sugars during fruit maturation and ripening was shown to be reproducible and stably inherited. Fruit of plants that over-expressed TRAMP mRNA showed no significant alteration in the sugars or acids investigated. These results suggest a role for TRAMP in the movement of solutes between cell compartments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.