Abstract

Lipid peroxidation induced by β-ray in tritiated water and the inhibiting effect of tea catechins on it were studied using a spin probe method. A hydrophobic spin probe, 16-doxylstearic acid (16NS), was incorporated into a liposome prepared from egg yolk phosphatidylcholine, which was dispersed in tritiated water; the catechins were added to the solution. The rate of the decrease of ESR intensity of 16NS was a measure of the peroxidation and of the inhibiting effect. Inhibiting activity increased with an increase in the concentration of the catechin. Inhibiting ability estimated from the slope of the curves was in the order of (−)-epicatechin gallate > (−)-epigallocatechin gallate > (−)-epicatechin > (−)-epigallocatechin. The activity decreased with increasing temperature and the temperature dependence increased with the catechin concentration. These results were explained by a model; the initiator of the peroxidation is the hydroxyl radical (OH) and catechin is adsorbed on the surface of the membrane and scavenges OH coming into there from the water phase. The activity depended on the ratio of the adsorbed catechin, namely the partition coefficient between the water and the lipid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call