Abstract

RBM39 is a known splicing factor and coactivator. Here, we report that RBM39 functions as a master transcriptional regulator that interacts with the MLL1 complex to facilitate chromatin binding and H3K4 trimethylation in breast cancer cells. We identify RBM39 functional domains required for DNA and complex binding and show that the loss of RBM39 has widespread effects on H3K4me3 and gene expression, including key oncogenic pathways. RBM39's RNA recognition motif 3 (RRM3) functions as a dominant-negative domain; namely, it disrupts the complex and H3K4me trimethylation and expression of RBM/MLL1 target genes. RRM3-derived cell-penetrating peptides phenocopy the effects of the loss of RBM39 to decrease growth and survival of all major subtypes of breast cancer and yet are nontoxic to normal cells. These findings establish RBM39/MLL1 as a major contributor to the abnormal epigenetic landscape in breast cancer and lay thefoundation for peptide-mediated cancer-specific therapy based on disruption of RBM39 epigenomic functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.