Abstract

Nanostructured hydroxyapatite (HA)–graphene nanosheet (GN) composites have been fabricated by spark plasma sintering consolidation. Nanostructual evolution of the bioceramic-based composites during further high temperature heat treatment is characterized and enhanced mechanical strength is assessed. GN keeps intact after the treatment and its presence at HA grain boundaries effectively inhibits HA grain growth by impeding interconnection of individual HA grains. Microstructural characterization discloses strong coherent interfaces between GN and the (300) plane of HA crystals. This particular matching state in the composites agrees well with the competitive theoretical pull-out energy for single graphene sheet being departed from HA matrix. The toughening regimes that operate in HA–GN composites at high temperatures give clear insight into potential applications of GN for ceramic matrix composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call