Abstract
The expression of mRNAs for inhibin subunits was studied in the human teratocarcinoma cell line Tera-2 clone 13 before and after differentiation with retinoic acid (RA). Both α- and βB-subunits of inhibin were expressed. Subsequently, inhibin bio- and immunoactivity in the conditioned media of the Tera-2 cells were determined by studying the release of follicle-stimulating hormone from rat pituitary cells, by immunoassay and by immunoprecipitation using inhibin α- and βB-subunit specific antibodies. Strikingly dissimilar high bio- and low immuno-activities were found. The ensuing hypothesis that the high bioactivity might be due to the presence of the activin-binding protein follistatin was confirmed by immunoprecipitation of 34 and 37 kDa labelled proteins, using a polyclonal anti-follistatin antiserum after culture of the Tera-2 cells with [ 35S]-methionine. Furthermore, expression of activin receptor types II and 11B mRNA was found in the cells. Addition of 5 μM RA to monolayer cultures of Tera-2 cells resulted in differentiation to flat endoderm-like cells and caused a slight suppression of the expression of the mRNA encoding the inhibin α- and βB-subunits. The expression of follistatin and activin receptor type IIB was strongly suppressed, whereas the expression of the activin receptor type II was not affected. We conclude that Tera-2 cells secrete follistatin and express inhibin subunits and activin receptors differentially during RA-induced differentiation. The role of the decreased expression of follistatin and activin receptor IIB mRNA after addition of RA in the mechanism of RA-induced differentiation remains to be elucidated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.