Abstract

The secretion of oestradiol and inhibin were measured during the follicular and luteal phase of the cycle by a sensitive bioassay using sheep pituitary cells in culture in four ewes in which the left ovary had been autotransplanted to the neck. On day 12 of the cycle, premature luteal regression was induced with an injection of 100 micrograms cloprostenol (prostaglandin F2 alpha analogue; PG) and ovarian venous blood was collected every 4 h for 72 h. These same four ewes were infused in the ensuing cycle with NIH-oFSH-S14 at 10 micrograms/h for 48 h immediately after an injection of PG and sampled as above. During the luteal phase (-2 h before PG) both in the control and FSH-infused cycles the inhibin secretion rate (SR) was 27-45 units/min. After PG injection, the inhibin SR declined with time to reach 3.6-5 units/min at the onset of the LH surge (60 h after PG) in the control cycle. In contrast, in the following cycle infusion of FSH after PG injection caused a slight increase in the inhibin SR which then remained raised at 42-50 units/min for up to 60 h after PG. In the late follicular phase the oestradiol SR was greater in the FSH-infused than in the control cycles, indicating multiple follicular development. In the FSH-infused cycle the preovulatory surges of LH and FSH were markedly attenuated. These data demonstrate that (1) inhibin SR is high during the luteal phase suggesting that the sheep corpus luteum secretes inhibin, (2) in the control cycle inhibin SR declines during follicular maturation at a time when oestradiol SR is increasing but FSH levels are decreasing, and (3) exogenously administered FSH stimulates the secretion of inhibin from the ovary during the follicular phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.