Abstract

Background:MicroRNAs (miRs) have an important role in lung carcinogenesis and progression. Single-nucleotide polymorphisms (SNPs) in genes involved in miR biogenesis may affect miR expression in lung tissue and be associated with lung carcinogenesis and progression.Methods:We analysed 12 SNPs in POLR2A, RNASEN and DICER1 genes in 1984 cases and 2073 controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We investigated miR expression profiles in 165 lung adenocarcinoma (AD) and 125 squamous cell carcinoma tissue samples from the same population. We used logistic and Cox regression models to examine the association of individual genotypes and haplotypes with lung cancer risk and with lung cancer-specific survival, respectively. SNPs-miR expression associations in cases were assessed using two-sample t-tests and global permutation tests.Results:A haplotype in RNASEN (Drosha) was significantly associated with shorter lung cancer survival (hazard ratio=1.86, 95% CI=1.19–2.92, P=0.007). In AD cases, a SNP within the same haplotype was associated with reduced RNASEN mRNA expression (P=0.013) and with miR expression changes (global P=0.007) of miRs known to be associated with cancer (e.g., let-7 family, miR-21, miR-25, miR-126 and miR15a).Conclusion:Inherited variation in the miR-processing machinery can affect miR expression levels and lung cancer-specific survival.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.