Abstract

Mitochondrial genetic diseases can result from defects in mitochondrial DNA (mtDNA) in the form of deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These mutations may be spontaneous, maternally inherited, or a result of inherited nuclear defects in genes that maintain mtDNA. This review focuses on our current understanding of nuclear gene mutations that produce mtDNA alterations and cause mitochondrial depletion syndrome (MDS), progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). To date, all of these etiologic nuclear genes fall into one of two categories: genes whose products function directly at the mtDNA replication fork, such as POLG, POLG2, and TWINKLE, or genes whose products supply the mitochondria with deoxynucleotide triphosphate pools needed for DNA replication, such as TK2, DGUOK, TP, SUCLA2, ANT1, and possibly the newly identified MPV17.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.